# 介绍

# 1.概述

Apache Ignite是一个兼容ANSI-99、水平可扩展以及容错的分布式SQL数据库,这个分布式是以数据在集群范围的复制或者分区的形式提供的,具体的形式取决于使用场景。

作为一个SQL数据库,Ignite支持所有的DML指令,包括SELECT、UPDATE、INSERT和DELETE,它还实现了一个与分布式系统有关的DDL指令的子集。

Ignite的一个突出特性是完全支持分布式的SQL关联,Ignite支持并置和非并置的数据关联。并置时,关联是在每个节点的可用数据集上执行的,而不需要在网络上移动大量的数据,这种方式在分布式数据库中提供了最好的扩展性和性能。

和很多的分布式SQL数据库不同,对于数据和索引,Ignite将内存和磁盘都视为完整有效的存储层,但是磁盘是可选的,如果禁用,Ignite就变为纯内存数据库。

可以像其它的SQL存储一样,根据需要与Ignite进行交互,比如通过外部的工具或者应用使用JDBC或者ODBC驱动进行连接。在这之上,Java、.NET和C++开发者也可以使用Ignite的原生SQL API。

# 2.入门

# 2.1.概述

Ignite支持数据定义语言(DDL)语句,可以在运行时创建和删除表和索引,还可以支持数据操作语言(DML)来执行查询,这些不管是Ignite的原生SQL API还是ODBC和JDBC驱动,都是支持的。

在下面的示例中,会使用一个包含两个表的模式,这些表会用于保存城市以及居住在那里的人的信息,假定一个城市有很多的人,并且人只会居住于一个城市,这是一个一对多(1:m)的关系。

# 2.2.连接

作为入门来说,可以使用一个SQL工具,在后面的SQL工具章节中会有一个示例来演示如何配置SQL工具。还可以使用SQLLine接入集群然后在命令行执行SQL语句。

如果希望从源代码入手,下面的示例代码会演示如果通过JDBC以及ODBC驱动来获得一个连接: JDBC:

// Register JDBC driver
Class.forName("org.apache.ignite.IgniteJdbcThinDriver");

// Open JDBC connection
Connection conn = DriverManager.getConnection(
    "jdbc:ignite:thin://127.0.0.1/");

ODBC:

// Combining connect string
std::string connectStr = "DRIVER={Apache Ignite};SERVER=localhost;PORT=10800;SCHEMA=PUBLIC;";

SQLCHAR outstr[ODBC_BUFFER_SIZE];
SQLSMALLINT outstrlen;

// Connecting to ODBC server
SQLRETURN ret = SQLDriverConnect(dbc, NULL, reinterpret_cast<SQLCHAR*>(&connectStr[0]), static_cast<SQLSMALLINT>(connectStr.size()),
outstr, sizeof(outstr), &outstrlen, SQL_DRIVER_COMPLETE);

JDBC连接会使用thin模式驱动然后接入本地主机(127.0.0.1),一定要确保ignite-core.jar位于应用或者工具的类路径中,具体信息可以查看JDBC驱动相关的章节。

ODBC连接也是接入本地localhost,端口是10800,具体可以查看ODBC驱动相关的文档。

不管选择哪种方式,都需要打开一个命令行工具,然后转到{apache-ignite-version}/bin,然后执行ignite.sh或者ignite.bat脚本,这样可以启动一个或者多个节点,如果使用了Ignite.NET或者Ignite.C++,那么也可以使用对应的可执行文件启动一个节点。 Unix:

./ignite.sh

Windows:

ignite.bat

.NET:

platforms\dotnet\bin\Apache.Ignite.exe

C++ Windows

modules\platforms\cpp\project\vs\x64\Release\ignite.exe

C++ Unix:

./modules/platforms/cpp/ignite/ignite

如果节点是通过Java应用启动,要保证在Maven的pom.xml文件中包含ignite-indexing模块依赖:

<dependency>
    <groupId>org.apache.ignite</groupId>
    <artifactId>ignite-indexing</artifactId>
    <version>${ignite.version}</version>
</dependency>

# 2.3.创建表

当前,创建的每个表都会位于PUBLIC模式,在模式和索引章节会有更详细的信息。 下面的示例代码会创建City和Person表: SQL:

CREATE TABLE City (
  id LONG PRIMARY KEY, name VARCHAR)
  WITH "template=replicated";

CREATE TABLE Person (
  id LONG, name VARCHAR, city_id LONG, PRIMARY KEY (id, city_id))
  WITH "backups=1, affinityKey=city_id";

JDBC:

// Create database tables
try (Statement stmt = conn.createStatement()) {

    // Create table based on REPLICATED template
    stmt.executeUpdate("CREATE TABLE City (" +
    " id LONG PRIMARY KEY, name VARCHAR) " +
    " WITH \"template=replicated\"");

    // Create table based on PARTITIONED template with one backup
    stmt.executeUpdate("CREATE TABLE Person (" +
    " id LONG, name VARCHAR, city_id LONG, " +
    " PRIMARY KEY (id, city_id)) " +
    " WITH \"backups=1, affinityKey=city_id\"");
}

ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Create table based on REPLICATED template
SQLCHAR query1[] = "CREATE TABLE City ("
  "id LONG PRIMARY KEY, name VARCHAR) "
  "WITH \"template=replicated\"";
SQLSMALLINT queryLen1 = static_cast<SQLSMALLINT>(sizeof(query1));

SQLExecDirect(stmt, query, queryLen);

// Create table based on PARTITIONED template with one backup
SQLCHAR query2[] = "CREATE TABLE Person ( "
    "id LONG, name VARCHAR, city_id LONG "
    "PRIMARY KEY (id, city_id)) "
    "WITH \"backups=1, affinityKey=city_id\"";
SQLSMALLINT queryLen2 = static_cast<SQLSMALLINT>(sizeof(query2));

SQLExecDirect(stmt, query, queryLen);

CREATE TABLE命令执行之后,会做如下的工作:

  • 会自动使用表名创建一个分布式缓存,它会用于存储City和Person类型的对象,这个缓存存储的City和Person对象可以与特定的Java、.NET和C++类或者二进制对象相对应;
  • 会定义一个带有所有参数的SQL表;
  • 数据以键-值记录的形式存储,主键列会用作存储对象的键,剩下的字段属于值,这就意味着可以使用键值API来处理数据。

和分布式缓存相关的参数是通过WITH子句传递的,如果忽略了WITH子句,那么缓存会使用CacheConfiguration对象的默认参数来创建。

在上面的示例中,对于Person表,Ignite创建了一个有一份备份数据的分布式缓存,city_id作为关联键,这些扩展参数是Ignite特有的,通过WITH进行传递,要为表配置其它的缓存参数,需要使用template参数,并且使用之前注册的缓存配置的名字(通过代码或者XML),具体可以参照扩展参数相关章节。

很多时候将不同的条目并置在一起非常有用,通常业务逻辑需要访问不止一个数据条目,将它们并置在一起会确保具有相同affinityKey的所有条目会被缓存在同一个节点上,这样就不需要从远程获取数据以避免耗时的网络开销。

在本示例中,有CityPerson对象,并且希望并置Person对象及其居住的City对象,要做到这一点,就像上例所示,使用了WITH子句并且指定了affinityKey=city_id

# 2.4.创建索引

定义索引可以加快查询的速度,下面是创建索引的示例: SQL:

CREATE INDEX idx_city_name ON City (name)

CREATE INDEX idx_person_name ON Person (name)

JDBC:

// Create indexes
try (Statement stmt = conn.createStatement()) {

    // Create an index on the City table
    stmt.executeUpdate("CREATE INDEX idx_city_name ON City (name)");

    // Create an index on the Person table
    stmt.executeUpdate("CREATE INDEX idx_person_name ON Person (name)");
}

ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Create an index on the City table
SQLCHAR query[] = "CREATE INDEX idx_city_name ON City (name)";

SQLSMALLINT queryLen = static_cast<SQLSMALLINT>(sizeof(query));

SQLRETURN ret = SQLExecDirect(stmt, query, queryLen);

// Create an index on the Person table
SQLCHAR query2[] = "CREATE INDEX idx_person_name ON Person (name)";

SQLSMALLINT queryLen2 = static_cast<SQLSMALLINT>(sizeof(query2));

ret = SQLExecDirect(stmt, query2, queryLen2);

# 2.5.插入数据

对数据进行查询之前,需要在两个表中加载部分数据,下面是如何往表中插入数据的示例: SQL:

INSERT INTO City (id, name) VALUES (1, 'Forest Hill');
INSERT INTO City (id, name) VALUES (2, 'Denver');
INSERT INTO City (id, name) VALUES (3, 'St. Petersburg');

INSERT INTO Person (id, name, city_id) VALUES (1, 'John Doe', 3);
INSERT INTO Person (id, name, city_id) VALUES (2, 'Jane Roe', 2);
INSERT INTO Person (id, name, city_id) VALUES (3, 'Mary Major', 1);
INSERT INTO Person (id, name, city_id) VALUES (4, 'Richard Miles', 2);

JDBC: // Populate City table try (PreparedStatement stmt = conn.prepareStatement("INSERT INTO City (id, name) VALUES (?, ?)")) {

stmt.setLong(1, 1L);
stmt.setString(2, "Forest Hill");
stmt.executeUpdate();

stmt.setLong(1, 2L);
stmt.setString(2, "Denver");
stmt.executeUpdate();

stmt.setLong(1, 3L);
stmt.setString(2, "St. Petersburg");
stmt.executeUpdate();

}

// Populate Person table try (PreparedStatement stmt = conn.prepareStatement("INSERT INTO Person (id, name, city_id) VALUES (?, ?, ?)")) {

stmt.setLong(1, 1L);
stmt.setString(2, "John Doe");
stmt.setLong(3, 3L);
stmt.executeUpdate();

stmt.setLong(1, 2L);
stmt.setString(2, "Jane Roe");
stmt.setLong(3, 2L);
stmt.executeUpdate();

stmt.setLong(1, 3L);
stmt.setString(2, "Mary Major");
stmt.setLong(3, 1L);
stmt.executeUpdate();

stmt.setLong(1, 4L);
stmt.setString(2, "Richard Miles");
stmt.setLong(3, 2L);
stmt.executeUpdate();

} ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Populate City table
SQLCHAR query1[] = "INSERT INTO City (id, name) VALUES (?, ?)";

SQLRETURN ret = SQLPrepare(stmt, query1, static_cast<SQLSMALLINT>(sizeof(query1)));

char name[1024];

int32_t key = 1;
strncpy(name, "Forest Hill", sizeof(name));
ret = SQLExecute(stmt);

key = 2;
strncpy(name, "Denver", sizeof(name));
ret = SQLExecute(stmt);

key = 3;
strncpy(name, "Denver", sizeof(name));
ret = SQLExecute(stmt);

// Populate Person table
SQLCHAR query2[] = "INSERT INTO Person (id, name, city_id) VALUES (?, ?, ?)";

ret = SQLPrepare(stmt, query2, static_cast<SQLSMALLINT>(sizeof(query2)));

key = 1;
strncpy(name, "John Doe", sizeof(name));
int32_t city_id = 3;
ret = SQLExecute(stmt);

key = 2;
strncpy(name, "Jane Roe", sizeof(name));
city_id = 2;
ret = SQLExecute(stmt);

key = 3;
strncpy(name, "Mary Major", sizeof(name));
city_id = 1;
ret = SQLExecute(stmt);

key = 4;
strncpy(name, "Richard Miles", sizeof(name));
city_id = 2;
ret = SQLExecute(stmt);

Java API

// Connecting to the cluster.
Ignite ignite = Ignition.start();

// Getting a reference to an underlying cache created for City table above.
IgniteCache<Long, City> cityCache = ignite.cache("SQL_PUBLIC_CITY");

// Getting a reference to an underlying cache created for Person table above.
IgniteCache<PersonKey, Person> personCache = ignite.cache("SQL_PUBLIC_PERSON");

// Inserting entries into City.
SqlFieldsQuery query = new SqlFieldsQuery(
    "INSERT INTO City (id, name) VALUES (?, ?)");

cityCache.query(query.setArgs(1, "Forest Hill")).getAll();
cityCache.query(query.setArgs(2, "Denver")).getAll();
cityCache.query(query.setArgs(3, "St. Petersburg")).getAll();

// Inserting entries into Person.
query = new SqlFieldsQuery(
    "INSERT INTO Person (id, name, city_id) VALUES (?, ?, ?)");

personCache.query(query.setArgs(1, "John Doe", 3)).getAll();
personCache.query(query.setArgs(2, "Jane Roe", 2)).getAll();
personCache.query(query.setArgs(3, "Mary Major", 1)).getAll();
personCache.query(query.setArgs(4, "Richard Miles", 2)).getAll();

# 2.6.查询数据

数据加载之后,就可以执行查询了。下面就是如何查询数据的示例,其中包括两个表之间的关联: SQL:

SELECT *
FROM City;

SELECT name
FROM City
WHERE id = 1;

SELECT p.name, c.name
FROM Person p, City c
WHERE p.city_id = c.id;

JDBC:

// Get data using an SQL join sample.
try (Statement stmt = conn.createStatement()) {
    try (ResultSet rs =
    stmt.executeQuery("SELECT p.name, c.name " +
    " FROM Person p, City c " +
    " WHERE p.city_id = c.id")) {

      System.out.println("Query result:");

      while (rs.next())
         System.out.println(">>>    " + rs.getString(1) +
            ", " + rs.getString(2));
    }
}

ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Get data using an SQL join sample.
SQLCHAR query[] = "SELECT p.name, c.name "
  "FROM Person p, City c "
  "WHERE p.city_id = c.id";

SQLSMALLINT queryLen = static_cast<SQLSMALLINT>(sizeof(query));

SQLRETURN ret = SQLExecDirect(stmt, query, queryLen);

Java API

// Connecting to the cluster.
Ignite ignite = Ignition.start();

// Getting a reference to an underlying cache created for City table above.
IgniteCache<Long, City> cityCache = ignite.cache("SQL_PUBLIC_CITY");

// Querying data from the cluster using a distributed JOIN.
SqlFieldsQuery query = new SqlFieldsQuery("SELECT p.name, c.name " +
    " FROM Person p, City c WHERE p.city_id = c.id");

FieldsQueryCursor<List<?>> cursor = cityCache.query(query);

Iterator<List<?>> iterator = cursor.iterator();

System.out.println("Query result:");

while (iterator.hasNext()) {
    List<?> row = iterator.next();

    System.out.println(">>>    " + row.get(0) + ", " + row.get(1));
}

# 2.7.修改数据

有时数据是需要修改的,这时就可以执行修改操作来修改已有的数据,下面是如何修改数据的示例: SQL:

UPDATE City
SET name = 'Foster City'
WHERE id = 2;

JDBC:

// Update
try (Statement stmt = conn.createStatement()) {

    // Update City
    stmt.executeUpdate("UPDATE City SET name = 'Foster City' WHERE id = 2");
}

ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Update City
SQLCHAR query[] = "UPDATE City SET name = 'Foster City' WHERE id = 2"

SQLSMALLINT queryLen = static_cast<SQLSMALLINT>(sizeof(query));

SQLRETURN ret = SQLExecDirect(stmt, query, queryLen);

Java API

// Updating a city entry.
SqlFieldsQuery query = new SqlFieldsQuery(
    "UPDATE City SET name = 'Foster City' WHERE id = 2");

cityCache.query(query).getAll();

# 2.8.删除数据

可能还需要从数据库中删除数据,下面是删除数据的示例: SQL:

DELETE FROM Person
WHERE name = 'John Doe'

JDBC:

// Delete
try (Statement stmt = conn.createStatement()) {

    // Delete from Person
    stmt.executeUpdate("DELETE FROM Person WHERE name = 'John Doe'");
}

ODBC:

SQLHSTMT stmt;

// Allocate a statement handle
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

// Delete from Person
SQLCHAR query[] = "DELETE FROM Person WHERE name = 'John Doe'"

SQLSMALLINT queryLen = static_cast<SQLSMALLINT>(sizeof(query));

SQLRETURN ret = SQLExecDirect(stmt, query, queryLen);

Java API

// Removing a person.
SqlFieldsQuery query = new SqlFieldsQuery(
    "DELETE FROM Person WHERE name = 'John Doe'");

personCache.query(query).getAll();

# 2.9.示例

GitHub上有和这个入门文档有关的完整代码

最后更新时间:: 11/25/2023, 3:51:28 PM